Δ -spaces X and distinguished spaces $C_p(X)$

Arkady Leiderman*, Jerzy Kąkol

arkady@math.bgu.ac.il, kakol@amu.edu.pl

Definition. (G. M. Reed, E. van Douwen) A subset of reals $X \subset \mathbb{R}$ is said to be a Δ -set if for every decreasing sequence $\{D_n : n \in \omega\}$ of subsets of X with empty intersection, there is a decreasing sequence $\{V_n : n \in \omega\}$ consisting of open subsets of X, also with empty intersection, and such that $D_n \subset V_n$ for every $n \in \omega$.

Definition. (A. Grothendieck) A locally convex space (lcs) E is called *distinguished* if the strong dual of E (i.e. the topological dual of E endowed with the strong topology) is barrelled.

Theorem. Let X be a Tychonoff space. A lcs $C_p(X)$ is distinguished if and only if for each $f \in \mathbb{R}^X$ there is a bounded $B \subset C_p(X)$ such that f belongs to the closure of B in \mathbb{R}^X .

We say that a Tychonoff space X is a Δ -space if X satisfies property Δ , as in the first Definition above.

Theorem. Let X be a Tychonoff space. A lcs $C_p(X)$ is distinguished if and only if X is a Δ -space.

My talk will be devoted to the main results about Δ -spaces which are published recently in several joint works.

