## On $\sigma$ -metacompact function spaces

## Heikki Junnila

heikki.junnila@helsinki.fi

We introduce the following property of a family  $\mathcal{L}$  of subsets of a set S:

(\*) For all  $N \in \mathcal{L}$  and  $x \in S$ , there exists a finite subset A of N such that, for each  $L \in \mathcal{L}$ , if  $x \in L$  and  $L \cap N \neq \emptyset$ , then  $L \cap A \neq \emptyset$ .

We consider compact spaces which have a k-network with property (\*). Examples of spaces which do not admit a k-network with (\*) include  $\beta\omega$ , a compact scattered space of height  $\omega + 1$  and the one-point compactification of a tree-space.

**Theorem.** If K is a compact space which has a k-network with property (\*), then  $C_p(K)$  is hereditarily  $\sigma$ -metacompact.

Supercompact spaces are usually defined by the existence of a "binary" subbase for the closed subsets, but according to a known and easy result, every supercompact space has a binary closed k-network.

**Proposition.** A family  $\mathcal{L}$  of compact closed subsets of a space X is binary if, and only if, for all  $N \in \mathcal{L}$  and  $x \in X$ , there exists  $a \in N$  such that, for each  $L \in \mathcal{L}$ , if  $x \in L$  and  $L \cap N \neq \emptyset$ , then  $a \in L$ .

Hence every supercompact space has a k-network with (\*).

**Corollary.**  $C_p(K)$  is hereditarily  $\sigma$ -metacompact for every supercompact space K.

**Corollary.**  $C_p(K)$  is hereditarily  $\sigma$ -metacompact for every dyadic space K.

