The double density spectrum of a topological space

István Juhász

juhasz@renyi.hu

The set of densities of all dense subspaces of a topological space X is called the *double density spectrum* of X and is denoted by dd(X).

We improve an earlier result by showing that dd(X) is always ω -closed (i.e. countably closed) if X is Hausdorff. We characterize the double density spectra of Hausdorff and of regular spaces:

Let S be a non-empty set of infinite cardinals. Then

- (1) S = dd(X) for a Hausdorff space X if and only if S is ω -closed and $\sup S \leq 2^{2^{\min S}}$;
- (2) S = dd(X) for a regular space X if and only if S is ω -closed and $\sup S \leq 2^{\min S}$.

We do not have a characterization of the double density spectra of compact spaces but give some non-trivial consistency results concerning them:

- (1) If $\kappa = cf(\kappa)$ embeds in $\mathcal{P}(\omega)/\text{fin}$ and S is a set of uncountable regular cardinals $< \kappa$ with $|S| < \min S$, then there is a compactum C such that $\{\omega, \kappa\} \cup S \subset dd(C)$, moreover $\lambda \notin dd(C)$ whenever $|S| + \omega < cf(\lambda) < \kappa$ and $cf(\lambda) \notin S$.
- (2) It is consistent to have a separable compactum C such that dd(C) is not $\omega_1\text{-closed}.$

This is joint work with J. van Mill, L. Soukup, and Z. Szentmiklóssy.

