Periodicity of solenoidal automorphisms

Faiz Imam^{*1}, Sharan Gopal

mefaizy@gmail.com, sharanraghu@gmail.com

Characterization of the sets of periodic points of a family of dynamical systems is a well studied problem in the literature. Here, we consider this problem for the family of automorphisms on a solenoid. By definition, a solenoid Σ is a compact connected finite dimensional abelian group. Equivalently, a topological group Σ will be a solenoid if its Pontryagin dual $\hat{\Sigma}$ is a subgroup of \mathbb{Q}^n and also contains \mathbb{Z}^n as a subgroup for some positive integer n. When the dual is equal to \mathbb{Z}^n , the solenoid is actually an n-dimensional torus, while its known as a full solenoid when the dual is \mathbb{Q}^n . Previously the characterization has been done on n-dimensional torus, full solenoids and also for the alternate description by considering a one-dimensional solenoid as the inverse limit of a sequence of maps on unit circle.

This talk is based upon a pre-print, related to our recent work about the extension of periodic point characterization to *n*-dimensional solenoids, whose duals are subgroups of algebraic number fields. Here, we used the theory of adeles for describing a solenoid and the periodic points of its automorphisms. The ring of adeles $\mathbb{A}_{\mathbb{K}}$ of an algebraic number field \mathbb{K} , is the restricted product of \mathbb{K}_v 's with respect to \Re_v 's, where \mathbb{K}_v is the completion of \mathbb{K} with respect to a place v and \Re_v is an open, unique maximal compact subring of \mathbb{K}_v .

 $^{^1\}mathrm{Both}$ the authors thank SERB-DST, Govt. of India for financial support.

