A Banach space C(K) reading the dimension of K

Damian Głodkowski¹

d.glodkowski@uw.edu.pl

In 2004 Koszmider constructed a compact Hausdorff space K such that whenever L is compact Hausdorff and the Banach spaces of continuous functions C(K) and C(L) are isomorphic, L is not zero-dimensional. We show that, assuming Jensen's diamond principle (\diamondsuit), the following strengthening of the above result holds:

Theorem. Assume \diamond . Let $n \in \mathbb{N}$. There is a compact Hausdorff space K, such that if L is compact Hausdorff and $C(K) \sim C(L)$, then the covering dimension of L is equal to n.

The constructed space is a modification of Koszmider's example. It is a separable connected compact space with the property that every linear bounded operator $T: C(K) \to C(K)$ is a weak multiplication i.e. it is of the form T(f) = gf + S(f), where $g \in C(K)$ and S is a weakly compact operator on C(K).

 $^{^1\}mathrm{The}$ author was supported by the NCN (National Science Centre, Poland) research grant no. 2021/41/N/ST1/03682

