Planar absolute retracts and countable structures

Jan Dudák

dudakjan@seznam.cz

A compact space is said to be an absolute retract (AR) if it is homeomorphic to a retract of the Hilbert cube. In particular, every AR is a locally connected, simply connected continuum. The following lemma shows an interesting property of ARs in the plane.

Lemma. If $X, Y \subseteq \mathbb{R}^2$ are absolute retracts, then X is homeomorphic to Y if and only if ∂X is homeomorphic to ∂Y .

A sketch of the proof of this lemma is going to be shown, as well as examples witnessing the importance of the assumption that X and Y are ARs.

This lemma has a nice consequence belonging to the field of invariant descriptive set theory (a discipline studying complexities of equivalence relations on standard Borel spaces).

Theorem. The homeomorphism equivalence relation on the class of planar absolute retracts is classifiable by countable structures.

On the other hand, we also have the following theorem.

Theorem. The homeomorphism equivalence relation on the class of absolute retracts contained in \mathbb{R}^3 is not classifiable by countable structures.

Question. Is the homeomorphism equivalence relation on the class of planar absolute neighborhood retracts classifiable by countable structures?

