Embedding of the Higson compactification into the product of adelic solenoids

Alexander Dranishnikov*1, James Keesling

dranish@ufl.edu, kees@ufl.edu

The Higson compactification \bar{X} of X is defined by means of bounded slowly oscillating continuous functions $f: X \to \mathbb{R}$. If C_h is the set of all such functions, then \bar{X} is homeomorphic to the closure of X under the embedding

$$(f)_{f \in C_h} : X \to \prod_{f \in C_h} [\inf f, \sup f].$$

Theorem. Every simply connected proper geodesic metric space X admits an embedding of its Higson compactification into the product of adelic solenoids

$$F: \bar{X} \to \prod_{\mathcal{A}} \Sigma_{\infty}$$

that induces an isomorphism of 1-dimensional Čech cohomology.

As a corollary we obtain the following

Theorem. For any p and any simply connected finite dimensional proper geodesic metric space X its Higson compactification can be essentially embedded into the product of Knaster continua K_p .

We recall that the Knaster continuum $K_p = \Sigma_p / \sim$ is the quotient space under the identification $x \sim -x$.

 $^{^{1}\}mathrm{The}$ first author was partially supported by Simons Foundation.

