Entropy of amenable monoid actions

Dikran Dikranjan*, Anna Giordano Bruno, Simone Virili

dikran.dikranjan@uniud.it, anna.giordanobruno@uniud.it, virili.simone@gmail.com

For a right action $K \stackrel{\rho}{\curvearrowleft} S$ of a cancellative right amenable monoid S on a compact Hausdorff space K, we build its *Ore colocalization* $K^* \stackrel{\rho^*}{\curvearrowleft} G$, where K^* is a compact space and G is the group of left fractions of S. This construction preserves the topological entropy (i.e., $h_{\text{top}}(\rho^*) = h_{\text{top}}(\rho)$) and linearity of the action.

Similarly, for a left linear action $S \stackrel{\lambda}{\frown} X$ on a discrete Abelian group X, we construct its *Ore localization* $G \stackrel{\lambda^*}{\frown} X^*$, which is linear and preserves the algebraic entropy h_{alg} (i.e., $h_{\text{alg}}(\lambda^*) = h_{\text{alg}}(\lambda)$). Moreover, if $K \stackrel{\rho}{\frown} S$ a right linear action with K a compact Abelian group and $S \stackrel{\rho^{\wedge}}{\frown} X$ is the dual left action on the discrete Pontryagin dual $X := K^{\wedge}$, then the Ore localization of ρ^{\wedge} is conjugated to dual of the Ore colocalization $K^* \stackrel{\rho}{\frown} G$. Using this fact, we prove the useful equality $h_{\text{top}}(\rho) = h_{\text{alg}}(\rho^{\wedge})$,

known also as Bridge Theorem.

We obtain an Addition Theorem for h_{top} (i.e., for a linear action $K \stackrel{\rho}{\frown} S$ on a compact group K, a ρ -invariant closed subgroup H of K and the left cosets space K/H, $h_{top}(\rho) = h_{top}(\rho_H) + h_{top}(\rho_{K/H})$), as well as a similar Addition Theorem for h_{alg} .

