A proof of the Tree Alternative Conjecture for the Topological Minor Relation

Jorge Bruno*, Paul Szeptycki

jorge.bruno@winchester.ac.uk, szeptyck@yorku.ca

The Tree Alternative Conjecture states that the equivalence class of any tree (rooted or unrooted) under mutual embeddability is either 1 or infinite. We prove the analogous for the topological minor relation.

Theorem. For any tree T

(1) $|T| = 1 \text{ or } |T| \ge \aleph_0, \text{ and }$

(2) for any $r \in V(T)$, |(T,r)| = 1 or $|(T,r)| \ge \aleph_0$.

The above is proved by means of stratifying all trees into two complementary categories: those containing all *large* and those containing *small* trees. We then establish the following

Theorem. For any large tree T,

```
(1) |T| \geq 2^{\aleph_0} and
```

(2) for any $r \in V(T)$, $|(T,r)| \ge 2^{\aleph_0}$.

Theorem. For any small tree T,

- (1) $|T| = 1 \text{ or } |T| \ge \aleph_0, \text{ and }$
- (2) for any $r \in V(T)$, |(T,r)| = 1 or $|(T,r)| \ge \aleph_0$.

