Hereditarily indecomposable continua as Fraïssé limits

Adam Bartoš*1, Wiesław Kubiś

bartos@math.cas.cz, kubis@math.cas.cz

In 2006, Irwin and Solecki introduced projective Fraïssé theory of topological structures and showed that a pre-space of the pseudo-arc is the Fraïssé limit of the class of all finite linear graphs and quotient maps. They also characterized the pseudo-arc as the unique arc-like continuum $\mathbb P$ such that for every arc-like continuum Y, every $\varepsilon > 0$, and every continuous surjections $f,g \colon \mathbb P \to Y$ there is a homeomorphism $h \colon \mathbb P \to \mathbb P$ such that $\sup_{x \in \mathbb P} d(f(x),g(h(x))) < \varepsilon$.

We consider an approximate framework for Fraïssé theory where the pseudo-arc itself is the Fraïssé limit of the category $\mathcal I$ of all continuous surjections of the unit interval, in the category $\sigma \mathcal I$ of all arc-like continua and all continuous surjections. The characterizing condition above becomes the *projective homogeneity* condition in our framework.

Similarly, we may consider the category \mathcal{S} of all continuous surjections of the unit circle, and the category $\sigma \mathcal{S}$ of all circle-like continua and all continuous surjections. It turns out there is no Fraïssé limit of \mathcal{S} in $\sigma \mathcal{S}$. However, if we restrict to the subcategory $\mathcal{S}_P \subseteq \mathcal{S}$ of the maps whose degree uses only primes from a fixed set P, and the subcategory $\sigma \mathcal{S}_P \subseteq \sigma \mathcal{S}$ of circle-like continua that are limits of inverse sequences of \mathcal{S}_{P} -maps, with maps that can be approximated by \mathcal{S}_{P} -maps as morphisms, then the corresponding Fraïssé limit is the P-adic pseudo-solenoid \mathbb{P}_P , and it is characterized as the unique $\sigma \mathcal{S}_{P}$ -object that is projectively homogeneous, or equivalently has the projective extension property.

 $^{^1{\}rm The}$ authors were supported by GA ČR (Czech Science Foundation) grant EXPRO 20-31529X and RVO: 67985840.

